Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning
نویسندگان
چکیده
Numerous map-matching techniques have been developed to improve positioning, using Global Positioning System (GPS) data and other sensors. However, most existing map-matching algorithms process GPS data with high sampling rates, to achieve a higher correct rate and strong universality. This paper introduces a novel map-matching algorithm based on a hidden Markov model (HMM) for GPS positioning and mobile phone positioning with a low sampling rate. The HMM is a statistical model well known for providing solutions to temporal recognition applications such as text and speech recognition. In this work, the hidden Markov chain model was built to establish a map-matching process, using the geometric data, the topologies matrix of road links in road network and refined quad-tree data structure. HMM-based map-matching exploits the Viterbi algorithm to find the optimized road link sequence. The sequence consists of hidden states in the HMM model. The HMM-based map-matching algorithm is validated on a vehicle trajectory using GPS and mobile phone data. The results show a significant improvement in mobile phone positioning and high and low sampling of GPS data.
منابع مشابه
Movement Pattern Recognition Assisted Map Matching for Pedestrian/Wheelchair Navigation
Today’s mobile technology features several sensors that when integrated can provide ubiquitous navigation assistance to pedestrians including wheelchair users. Common sensors found in most smartphones are Global Positioning System (GPS), accelerometer, and compass. In this paper, a user’s movement pattern recognition algorithm to improve map matching efficiency and accuracy in pedestrian/wheelc...
متن کاملAn Incremental Map-Matching Algorithm Based on Hidden Markov Model
Map-matching algorithms aim at establishing a vehicle location on a road segment based on positioning data from a variety of sensors: GPS receivers, WiFi or cellular radios. They are integral part of various Intelligent Transportation Systems (ITS) including fleet management, vehicle tracking, navigation services, traffic monitoring and congestion detection. Our work was motivated by an idea of...
متن کاملMap-matching in a real-time traffic monitoring
We describe a prototype implementation of a real time traffic monitoring service that uses GPS positioning information received from moving vehicles to calculate average speed and travel time and assign them to road segments. The primary factor for reliability of determined parameters is the correct calculation of a vehicle location on a road segment, which is realized by a map-matching algorit...
متن کاملMap Matching with Inverse Reinforcement Learning
We study map-matching, the problem of estimating the route that is traveled by a vehicle, where the points observed with the Global Positioning System are available. A state-of-the-art approach for this problem is a Hidden Markov Model (HMM). We propose a particular transition probability between latent road segments by the use of the number of turns in addition to the travel distance between t...
متن کاملReal-Time Dense Map Matching with Naive Hidden Markov Models: Delay versus Accuracy
In this paper, an algorithm for map matching is proposed, based on a Viterbi algorithm running over a Hidden Markov Model. The algorithm performs similarly to other existing algorithms for map matching, but runs faster and forgoes the use of memory-intensive shortest path algorithms. The results for the algorithm on data collected around Palo Alto are provided, and various potential improvement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017